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SUMMARY We present measurements of kilohertz and
megahertz sine waves synthesized using a Josephson arbitrary
waveform synthesizer. A 4.8 kHz sine wave synthesized using an
ac-coupled bias technique is shown to have a stable 121mV peak
voltage and harmonic distortion 101 dB below the fundamental
(−101 dBc (carrier)). We also present results of our first phase-
noise measurement. A 5.0MHz sine wave was found to have
distortion 33 dB lower than the same signal synthesized using a
semiconductor digital code generator. The white-noise floor of
the Josephson synthesized signal is −132 dBc/Hz and is limited
by the noise floor of the preamplifier.
key words: Josephson juncion, voltage standard, digital syn-

thesis, harmonic distortion, phase noise

1. Introduction

The Josephson arbitrary waveform synthesizer is capa-
ble of synthesizing ac, dc, and arbitrary voltage wave-
forms with low harmonic distortion and stable, calcu-
lable, and reproducible amplitude and phase [1]–[6].
These features are possible because the waveforms are
synthesized using the perfectly quantized voltage pulses
produced by Josephson junctions. The time-integrated
area of every Josephson pulse is precisely equal to the
flux quantum, h/2e, the ratio of Planck’s constant to
twice the elementary electron charge. This precision
synthesized source will be useful in high-performance
audio and radio-frequency (rf) applications, including
ac voltage standards and electronic instrument calibra-
tion. In this paper we present our highest output volt-
age to date and our first phase-noise measurement of
synthesized sine waves.

Achieving output voltages of at least 100 mV has
been one of the major challenges for a practical Joseph-
son synthesizer. Since the output voltage of a single
junction is small, series arrays of N junctions are used.
The maximum peak output voltage of a series array is
Vp = nNf(h/2e), where n is the number of quantized
output pulses per input pulse and f is the pulse rep-
etition frequency. Approximately 5 × 1013 pulses per
secsond must be produced and controlled to generate a
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waveform with a 100 mV peak amplitude. Thus, high-
voltage output requires both many junctions and a high
pulse-repetition frequency. Knowledge of the number of
pulses and their position in time is sufficient to precisely
synthesize any digital waveform.

The need for higher voltage output led to the de-
velopment of a bipolar-waveform technique [3]–[5], fol-
lowed by the ac-coupled bias technique [6]. The bipo-
lar method adds a sine wave to the digital input sig-
nal, while the ac-coupled method divides the broad-
band digital input signal into low- and high-frequency
components that are applied to arrays through separate
low- and high-speed transmission lines. The ac-coupled
technique is particularly useful because it allows the
array output to be directly coupled to the spectrum
analyzer and enables multiple arrays to be combined
in series for higher output voltage [6]. A block dia-
gram of the ac-coupled technique is shown in Fig. 1.
The digital code signal VD is ac-coupled to the array
using a 10 MHz high-pass filter (HPF) to remove all
signals with frequencies below 10 MHz. However, the
low-frequency part of the original digital code signal
is necessary for biasing the array. This low-frequency
compensation bias current If (t) is reapplied to the ar-
ray through a separate low-speed transmission line.

A digital code that is M bits long is repeatedly cy-
cled through the circulating memory of the code gen-
erator. The synthesized waveform thus has a mini-
mum frequency called the pattern-repetition frequency,
f1 = fs/M , where fs is the clock frequency of the code
generator, which is also the sampling frequency of the
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Fig. 1 AC-coupled bias technique for bipolar waveforms of the
Josephson synthesizer. High-frequency signals from the digital
code generator are ac coupled to the array through a dc block-
ing capacitor (HPF). Low-frequency compensation bias If (t) is
applied through separate low-speed bias taps.
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Fig. 2 Measured power spectrum of a 4.8 kHz sine wave signal
showing harmonic distortion of 101 dB below the fundamental
(−101 dBc). A 1Hz resolution bandwidth was used.

analog-to-digital conversion of the modulator algorithm
[7].

2. Measurements

In order to achieve a large output voltage, we used
the ac-coupled bias method and combined the out-
put voltage from two series arrays with 4096 junc-
tions each. The arrays are biased with a 7.5 GHz
sine wave. The Nb-PdAu-Nb superconductor-normal
metal-superconductor junctions are 2 µm in diameter.
The on-chip bias taps to the arrays consist of a series of
2.7 nH square-coil inductors. The arrays have 8.6 mA
critical currents and 3.4 mΩ resistances per junction.
We synthesized a 4.8 kHz sine wave using a digital code
with 1 048 576 bits and a 0.95Vp amplitude. These bias
conditions yield a 120.8 mV peak amplitude, which cor-
responds to the measured power of −8.36 dBm.

The power spectrum of the synthesized sine wave
is shown in Fig. 2. The harmonic distortion is −101 dBc
(carrier), so that all harmonics are more than 100 dB
below the fundamental. The harmonic distortion of
the digital code generator’s output signal for the same
waveform is −41 dBc. The 60 dB reduction in distor-
tion of the Josephson array over the semiconductor gen-
erator is due to perfect quantization. The 5.8 kHz and
25.5 kHz tones are artifacts of the measurement appara-
tus; they appear in both spectra and are not harmonics
of the pattern-repetition frequency.

Exceeding 100 mV output from this large number
of junctions is an important milestone for the Joseph-
son synthesizer. However, synthesis of higher-frequency
megahertz signals is also of interest for metrology ap-
plications and for demonstrating that perfect quantiza-
tion improves waveform quality over a broad frequency
range. This is of particular interest for a new method
of Johnson noise thermometry that uses a Josephson
synthesizer to calibrate its correlation electronics over
a megahertz frequency range [8].

We synthesized a 5.0 MHz sine wave using the
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Fig. 3 Single-side-band phase noise of a 5MHz tone synthe-
sized using (a) a digital code generator (DCG) and (b) a Joseph-
son junction array (JJ).

same ac-coupled method described above, but used only
one of the 4096-junction arrays. The 0.9Vp amplitude
yields 57.2 mV, corresponding to a measured power of
−14.8 dBm. The digital code is 960 000 bits long, re-
sulting in a 5.2 kHz pattern-repetition frequency.

In order to investigate the spectral purity of this
waveform we measured phase noise of both the Joseph-
son array and the code generator output signals with a
NIST phase-noise detector and a 5 MHz reference [9],
[10]. In order to break ground loops, the Josephson
array output was amplified by a unity-gain 100 MHz
differential preamplifier with a 50 Ω termination on the
input. The digital code generator’s amplitude was at-
tenuated so that it was equivalent to the Josephson
array output signal amplitude.

Figure 3 shows the single-side-band phase noise as
a function of frequency offset from 5 MHz for both the
Josephson array and code generator synthesized wave-
forms. The phase-noise measurement of the code gener-
ator’s signal shows spurious tones at harmonics of the
5.2 kHz pattern-repetition frequency. These spurs re-
sult from the semiconductor generator’s distorted out-
put due to intrinsic amplitude and phase noise. The
Josephson array’s output has an essentially flat power
spectral density of 133 dBc/Hz from 1 to 20 kHz with no
spurs at the 5.2 kHz pattern-repetition frequency. The
white-noise floor and spurious tones at unexpected fre-
quencies are caused by the preamplifier. Nevertheless,
the Josephson output signal has pattern-related spurs
at least 33 dB below that of the code generator.

3. Conclusion

A lower-noise amplifier is needed to ascertain the true
noise floor of the Josephson array. However, the ab-
sence of spurs indicates that the Josephson array should
have improved phase noise as compared to the digi-
tal code generator. This first phase-noise result shows
that perfect quantization of the Josephson junctions
does provide ideal reproduction of a digital waveform
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to within our present measurement capabilities.
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